张显程

张显程

E-mail: xczhang@ecust.edu.cn

职位:
职称:
 教授、博士生导师




个人简介:

   1979年生于安徽安庆。2000年获辽宁石油化工大学化工过程机械专业学士学位、2003年获南京工业大学安全技术与工程硕士学位、2007年获上海交通大学材料加工工程专业博士学位。2008~2009年,在日本国家物质材料研究机构(NIMS)从事博士后研究。
    先后入选上海市晨光学者(2008)、上海市科技启明星(2008)、教育部新世纪优秀人才(2011)、上海市浦江人才(2012、国家自然科学基金优秀青年基金(2013)、教育部霍英东青年教师基金(2014)、上海市十大青年科技英才(基础研究类)2014)、国家自然科学基金杰出青年基金(2017)、国防卓越青年科学基金(2018)等人才支持计划。

办公地址:

   上海市徐汇区梅陇路130号实验17

研究方向

    一直致力于高温结构长寿命安全保障理论与技术前沿研究,在高温结构的寿命设计、评定和调控三个方面形成体系,研究成果应用于我国航空、航天关键部件及重载传动部件的设计、制造与运行维护。 主要研究方向包括:
1】基于损伤的高温结构寿命设计方法
2】基于断裂力学的损伤容限与寿命评定理论
3】基于表面状态调控的寿命提升技术

承担科研项目

    近年来,主持了包括国家自然科学基金、国防卓越青年科学基金、国家重点研发课题、上海市科委基础重大及重点项目、上海市产业转型升级发展专项资金产学研合作计划项目等在内的国家、国防及省部级重要项目20余项。目前主持的主要项目包括:

1国家自然科学基金委杰出青年基金项目:机械结构强度学(51725503),2018~2022,项目负责人

2国家自然科学基金委优秀青年基金项目:机械结构的损伤、疲劳与断裂(51322510),2014~2016,项目负责人  

3上海市产业转型升级发展专项资金产学研合作计划项目:轨迹可控的表面超塑性制造技术与延寿机理,2016~2018,项目负责人

4)国家重点研发计划课题:严苛环境下再制造装备损伤动力学与寿命预测,2018~2022,负责人

5)上海市教育委员会科研创新计划项目航空发动机涡轮盘孔强化技术与寿命优化理论2019~2022,项目负责人

6)中国航发商用航空发动机有限责任公司合作项目XXX叶片表面强化工艺验证2019~2020,项目负责人

获奖成果

    获教育部科技奖青年科学奖(2016、全国共9位)、中国机械工业科技进步一等奖(2016、排名第4)、上海市科技进步一等奖(2015、排名第1)、上海市青年五四奖章(2015)、中国机械工程学会青年科技成就奖(2015、全国共6名)、国家自然科学二等奖(2013、排名第3)、上海市自然科学一等奖(2012、排名第3)、北京市自然科学一等奖(2012、排名第3)、全国百篇优秀博士论文提名奖(2011)、国际焊接学会Henry Granjon 奖(2011、独立获奖人,全球2011年度共三位)、中国焊接学会最佳新人奖(2011)、中国石油与化学工业联合会科技进步一等奖(2010,排名第7)、上海市优秀博士论文(2009)等荣誉和奖励。  

 担任Frontiers of Mechanical EngineeringJournal of Materials Science & TechnologyScience China Technological SciencesInternational Journal of Mechanical Engineering and Applications Advances in Mechanical Engineering中国石油化工高等学校学报等五个国内外期刊编委,国际焊接学会压力容器、锅炉与管道专业委员会委员、中国机械工程学会材料学会理事、中国机械工程学会材料学会青年工作委员会主任委员、中国机械工程学会材料分会高温强度委员会秘书长。

代表性著作

     参编专著、英文文集各1本,发表期刊论文125篇,其中SCI论文104篇(第一/通讯作者88),他引2200余次(其中SCI他引1600余次),得到了国内外20余位院士等知名科学家的正面评价和拓展。多篇论文入选期刊热点或高被引论文,1篇论文被Nature Photonics期刊亮点报道。授权发明专利13件、实用新型专利4件,软件著作权5项。

       近五年主要文章包括:(/◆-SCI/EI*—通讯作者)   

  1. Li X, Guan B, Jia YF*, Xin YC, Zhang CC, Zhang XC*, Tu ST, Microstructural evolution, mechanical properties and thermal stability of gradient structured pure nickel, Acta Metallurgica Sinica (English Letters), Accepted.

  2. Wang ZM, Jia YF*, Zhang XC*, Fu Y, Zhang CC, Tu ST, Effects of Different Mechanical Surface Enhancement Techniques on Surface Integrity and Fatigue Properties of Ti-6Al-4V: A Review, Critical Reviews in Solid State and Materials Sciences, Accepted.

  3. Huang J, Zhang KM, Jia YF, Zhang CC, Zhang XC*, Ma XF, Tu ST, Effect of thermal annealing on themicrostructure, mechanical properties and residual stress relaxation of pure titanium after deep rollingtreatmentJournal of Materials Science & Technology, 2019; 35, 409. (/)

  4. Wang RZ, Zhu SP, Wang J, Zhang XC*, Tu ST, Zhang CC, High temperature fatigue and creep-fatigue behaviors in a Ni-based superalloy: Damage mechanisms and life assessment, International Journal of Fatigue, 2019; 118: 8. (/)

  5. Wang RZ, Wang J, Gong JG, Zhang XC*, Tu ST, Zhang CC,  Creep-fatigue behaviors and life assessments in two nickel-based superalloys, ASME Journal of Pressure Vessel Technology, 2018; 140(3), 031405. (/)

  6. Ye S, Zhang CC, Zhang PY, Zhang XC*, Tu ST, Wang RZ, Fatigue life prediction of nickel-based GH4169 alloy on the basis of a multi-scale crack propagation approach, Engineering Fracture Mechanics, 2018; 199: 29-40. (/)

  7. Zhao PC, Li SX, Jia YF, Zhang CC, Zhang XC*, Tu ST, Very high cycle fatigue behavior of Ti-6Al-4V alloy under corrosive environment, Fatigue & Fracture of Engineering Materials & Structures, 2018; 41: 881. (/)

  8. Ye S, Gong JG, Tu ST, Zhang XC*, Zhang CC, Multi-scale fatigue crack propagation in 304 stainless steel: Experiments and modeling, Fatigue & Fracture of Engineering Materials & Structures, 2017; 40: 1928-1941. (/)

  9. Ye S, Gong JG, Tu ST, Zhang XC*, Zhang CC, Local strain accumulation in fatigue crack propagation process of Ti-6Al-4V alloy, Fatigue & Fracture of Engineering Materials & Structures2017; 40: 836-849. (/)

  10. Zhang Y, Ma, GR, Zhang XC*, Li SF, Tu ST, Thermal oxidation of Ti-6Al-4V alloy and pure titanium under external bending strain: Experiment and modelling, Corrosion Science, 2017; 122: 61-73. (/)

  11. Ye S, Gong JG, Zhang XC*, Tu ST, Zhang CC, Effect of Stress Ratio on the Fatigue Crack Propagation Behavior of the Nickel-based GH4169 Alloy, Acta Metallurgica Sinica (English Letters), 2017; 30: 809-821. (/)

  12. Wang RZ, Zhu XM, Zhang XC*, Tu ST, Gong JG, Zhang CC, A generalized strain energy density exhaustion model allowing for compressive hold effect, International Journal of Fatigue, 2017;104: 61-71. (/)

  13. Wang RZ, Zhang XC*, Gong JG, Zhu XM, Tu ST, Zhang CC, Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650 oC based on cycle-by-cycle concept, International Journal of Fatigue, 2017; 93: 114. (/)

  14. Wang RZ, Chen Bo, Zhang XC*, Tu ST, Wang J, Zhang CC, The effects of inhomogeneous microstructure and loading waveform on creep-fatigue behaviour in a forged and precipitation hardened nickel-based superalloy, International Journal of Fatigue, 2017; 97: 190. (/)

  15. Zhang XC*, Li HC, Zeng X, Tu ST, Zhang CC, Wang QQ, Fatigue behavior and bilinear Coffin-Manson plots of Ni-based GH4169 alloy with different volume fractions of δ phase, Materials Science and Engineering: A, 2017; 682: 13. (/)

  16. Zhang XC*, Zhong F, Shao JB, Zhang CC, Hou NX, Yuan GJ, Tu ST, Failure mechanism and mode of Ti-6Al-4V alloy under uniaxial tensile loading: Experiments and micromechanical modeling, Materials Science and Engineering: A, 2016; 676: 536. (/)

  17. Wang RZ, Zhang XC*, Tu ST, Zhu SP, Zhang CC, A modified strain energy density exhaustion model for creep–fatigue life prediction. International Journal of Fatigue, 2016; 90: 12(/)

  18. Deng GJ, Tu ST, Zhang XC*, Wang J, Qian XY, Wang YN, Small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169 at 650 °C in air. Engineering Fracture Mechanics, 2016; 153: 35(/)

  19. Zhang Y, Zhang XC*, Tu ST, Coupled mechanical-oxidation modeling during silicon thermal oxidation process. AIP Advances, 2015; 5: 097105(/)

  20. Qin CH, Zhang XC*, Ye S, Tu ST, Grain size effect on multi-scale fatigue crack growth mechanism of Nickel-based alloy GH4169. Engineering Fracture Mechanics, 2015; 142: 140(/)

  21. Deng GJ, Tu ST, Zhang XC*, Wang QQ, Qin CH, Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169. Engineering Fracture Mechanics, 2015; 134: 433(/)

  22. Yan XL, Zhang XC*, Tu ST, Mannan SL, Xuan FZ, Lin YC, Review of creepfatigue endurance and life prediction of 316 stainless steels, International Journal of Pressure Vessels and Piping, 2015; 126/127: 17(/)

  23. Fu Y, Zhang XC*, Sui JF, Tu ST, Xuan FZ, Wang ZD, Microstructure and wear resistance of one-step in-situ synthesized TiN/Al composite coatings on Ti6Al4V alloy by a laser nitriding process, Optics & Laser Technology, 2015; 67: 78(/)

  24. Zhang XC*, Tu ST, Xuan FZ, Creep fatigue endurance of 304 stainless steels. Theoretical and Applied Fracture Mechanics, 2014; 71: 51. (/)

  25. Mao MD, Zhang XC*, Tu ST, FZ Xuan, Prediction of crack initiation life due to corrosion pits, AIAA Journal of Aircraft, 2014; 2014; 51: 805(/)

  26. Xu JS, Zhang XC*, Xuan FZ, Wang ZD, Tu ST, Rolling contact fatigue behavior of laser cladded WC/Ni composite coating. Surface and Coatings Technology, 2014; 239: 7(/)

  27. Deng GJ, Tu ST, Wang QQ, Zhang XC*, Xuan FZ, Small fatigue crack growth mechanisms of 304 stainless steel under different stress levels. International Journal of Fatigue, 2014; 64: 14(/)

  28. Zhang Y, Zhang XC*, Tu ST, Xuan FZ, Analytical modeling on stress assisted oxidation and its effect on creep response of metals, Oxidation of Metals, 2014; 82(3/4): 311(/)

  29. Tu ST, Zhang XC, Fatigue Crack Initiation Mechanisms, In book: Reference Module in Materials Science and Materials Engineering. DOI: 10.1016/B978-0-12-803581-8.02852-6


网页发布时间: 2019-09-04