宫建国

宫建国

E-mail: jggong@ecust.edu.cn
职称:副教授、硕士生导师


招生专业:(1) 学硕:动力工程及工程热物理、机械工程;(2) 专硕:能源动力、机械

  

  

  


本研究小组隶属于涂善东院士、轩福贞校长等领导的过程设备科学与工程研究室(PESE)。

带你科研生活两不误,不负青春好时光。欢迎对相关研究方向感兴趣的同学加入!

主要教育与工作经历: 

2009年6月本科毕业于中国石油大学(华东);

2014年6月博士毕业于浙江大学;

2014年7月进入华东理工大学动力工程及工程热物理博士后流动站;

2016年12月留校工作至今。


学术简介:

副教授、硕士生导师。ASME VIII卷中国国际工作组(CIWG)理事(2021-)、中国机械工程学会压力容器分会理事(2021-)、中国材料研究学会疲劳分会理事(2024-)、华东理工大学-上海核工院核能装备寿命管理技术联合研究中心主任助理(2021-)、中国机械工程学会高级会员(2021-),入选华东理工大学青年英才培育计划(2019)。


主要从事能源与动力领域机械结构完整性研究。目前,主持国家自然科学基金(面上、青年)、国家重点研发计划(子课题)、国家重大科技专项(外协)等课题研究。发表国内外期刊论文75篇:其中,以第一/通讯作者在International Journal of Fatigue、Engineering Fracture Mechanics、Fatigue & Fracture of Engineering Materials & Structures、ASME Journal of Pressure Vessel Technology、机械工程学报等国内外期刊发表论文45篇(SCI收录论文29篇)。出版专著1部(基于损伤模式的压力容器设计原理,科学出版社)。申请PCT国际/美国/中国发明专利18项(授权10项),授权软件著作权18项。获中国机械工业联合会科技进步二等奖1项(3/10)、中国石油和化工联合会科技进步一等奖1项(7/15)等奖励International Journal of Fatigue、Engineering Fracture Mechanics、ASME Journal of Pressure Vessel Technology等18个SCI期刊审稿人。


指导的研究生获得中国压力容器学会青年论文竞赛三等奖(2017,2人次)、全国反应堆结构力学会议优秀论文奖(2018,2022)等奖项。

  

  

联系方式:

地址:上海市徐汇区梅陇路130号华东理工大学实验17楼203

邮箱:jggong@ecust.edu.cn

电话:021-64251623

邮编:200237


研究方向


(1)先进核能/氢能等能源与动力领域机械结构完整性
  面向新一代核能、氢能等国家战略领域,开展关键部件的结构完整性评估技术研究,保障重大装备的长周期安全服役。 


(2)机器学习/深度学习及寿命预测方法
  基于机器学习、深度学习等先进算法,考虑高温结构失效的物理机制,建立考虑物理失效机制的高温结构寿命预测方法。


(3)数据驱动的关键部件可靠性评估
  针对深空探测等国防、军工领域需求,考虑多源参数不确定性,建立复杂高温失效模式下的高温装备可靠性评估技术。


(4)高温部件强度分析与安全评价程序/软件开发
  基于Python、Matlab等程序/计算开发语言,结合建立的结构完整性评价方法,开发高温部件强度分析评价软件。  

 

 

承担科研项目

[13] 上海核工程研究设计院股份有限公司,2023-2025,在研,主持

[12] 中国原子能科学研究院,2023-2024,在研,主持

[11] 中国原子能科学研究院,2022-2023,在研,主持

[10] 国家自然科学基金面上项目,52175139,2022/01-2025/12,在研,主持

[9] 国家自然科学基金青年基金项目,51605165,2017/01-2019/12,结题,主持

[8] 国家重点研发计划项目课题子任务,2016YFC0801905-03,2016/06-2020/06,结题,主持

[7] 中国核电工程有限公司,2021-2023,在研,主持

[6] 国家重大科技专项/上海核工程研究设计院,2019/03-2020/02,结题,主持

[5] 国家重大科技专项/上海核工程研究设计院,2020/03-2020/10,结题,主持

[4] 中央基本科研业务费,2017/03-2018/12,结题,主持

[3] 中国博士后基金,2015-2016,结题,主持

[2] 东方电气股份有限公司,2020/03-2021/12,结题,主持

[1] 东方重型机器(广州)有限公司,2020/03-2024/12,在研,主持

获奖成果

[6] 全国反应堆结构力学会议优秀论文奖,2022

[5] 中国石油和化工联合会科技进步一等奖(7/15),2021

[4] 中国机械工业科技进步二等奖(3/10),2019

[3] 华东理工大学青年英才培育计划,2019

[2] 全国反应堆结构力学会议优秀论文奖,2018

[1] 中国压力容器学会青年论文竞赛三等奖,2017


代表性著作

(1)专著:

[1] 轩福贞,宫建国. 基于损伤模式的压力容器设计原理. 北京:科学出版社,2020.

 

(2)期刊论文(部分)(*代表通讯作者):

[58] Fu JH, Zhu KP, Gong JG*, Gao FH, Xuan FZ*. Correlation between reliability and safety factor based methods in characterizing uncertainty of creep rupture properties. International Journal of Pressure Vessels and Piping, 2023, 206: 105068.

[57] Liu F, Yang J, Weng S, Xuan FZ*, Gong JG*. A machine learning method for buckling design of internally pressurized torispherical heads considering geometric imperfection. Thin-Walled Structures, 2023, 189: 110908.

[56] Guo SS, Gong JG*, Zhao P*, Niu TY, Xuan FZ. Creep damage in 9-12% Cr steel notched components: microstructural evolution and stress state dependence. International Journal of Pressure Vessels and Piping, 2023, 204: 104977.

[55] Lin GP, Gong JG*, Xuan FZ*. A whole-section failure criterion for creep life evaluation of components at elevated temperatures. Engineering Fracture Mechanics, 2023, 285: 109301. 

[54] Wang HJ, Li Bo*, Gong JG, Xuan FZ*. Machine learning-based fatigue life prediction of metal materials: Perspectives of physics-informed and data-driven hybrid methods. Engineering Fracture Mechanics, 2023, 284: 109242.

[53] 牛田野, 高永建, 陶贤超, 赵鹏, 宫建国*, 轩福贞. 核级SA-508 Gr.3 Cl.1材料拉伸与压缩蠕变行为的比较研究. 机械工程学报, 2023, 59(4): 96-104. 

[52] Guo SS, Gong JG*, Zhao P, Xuan FZ*. A probabilistic framework of creep life assessment of structural components at elevated temperature. Engineering Fracture Mechanics, 2023, 281: 109162.

[51] Liu F, Niu TY, Gong JG, Chen HF*, Xuan FZ*. Experimental and numerical investigations on buckling behaviours of axially compressed cylindrical-conical-cylindrical shells at elevated temperature. Thin-Walled Structures, 2023, 184: 110549.

[50] 陶贤超,高永建,赵鹏,胡靖东,宫建国*,轩福贞. 反应堆压力容器材料压缩蠕变性能及变形机制研究. 压力容器,2022, 39(7): 1-6.

[49] 莫亚飞,龚程,高付海,宫建国*,轩福贞. 核电高温设备蠕变强度评价方法对比研究. 压力容器,2022, 39(7): 35-42. 

[48] Wang N, Yu H, Zhao P*, Zhang JM, Gong JG*, Xuan FZ. Cyclic deformation response of austenitic Ni-based alloy: Mechanical behaviour, internal stress evolution and microstructural feature. Materials Science and Engineering A, 2022, 850: 143522.

[47] 高付海,宫建国*,轩福贞. 基于非弹性分析方法的核电高温结构完整性评价框架及应用研究. 压力容器, 2022, 39(4): 33-41.

[46] Liu Z, Gong JG*, Zhao P, Zhang XC, Xuan FZ*. Creep-fatigue interaction and damage behavior in 9-12%Cr steel under stress-controlled cycling at elevated temperature: Effects of holding time and loading rate. International Journal of Fatigue, 2022, 156: 106684. 

[45] Zhang XC, Gong JG*, Xuan FZ*. A Physics-Informed Neural Network for Creep-Fatigue Life Prediction of Components at Elevated Temperatures. Engineering Fracture Mechanics, 2021, 258: 108130.

[44] 张效成,宫建国,轩福贞*. 基于机器学习的蠕变断裂寿命预测方法. 压力容器, 2021, 38(7): 48-57.

[43] Gong JG*, Guo SS, Gao FH, Niu TY, Xuan FZ. Creep damage and interaction behavior of neighboring notches for components at elevated temperature. Engineering Fracture Mechanics, 2021, 256: 107996. 

[42] Zhao P, Lu TY, Gong JG*, Xuan FZ, Berto F. A strain energy density based life prediction model for notched components in the low cycle fatigue regime. International Journal of Pressure Vessels and Piping, 2021, 193: 104458. 

[41] Gong C, Gong JG*, Xuan FZ*. A time-dependent stress and strain estimation method for notched components under combined primary and secondary loads. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(9): 2307-2322. 

[40] Liu F, Gong JG, Chen HF*, Xuan FZ*. A Direct Approach to Progressive Buckling Design Considering Ratcheting Deformation. Thin-Walled Structures, 2021, 163: 107656.

[39] Zhang XC, Gong JG, Gao FH, Xuan FZ*. An improved creep-fatigue life model involving the cyclic softening/hardening and stress relaxation effect. ASME Journal of Pressure Vessel Technology, 2021, 143(4): 041502. 

[38] Zhang XC, Gong JG*, Xuan FZ*. A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions. International Journal of Fatigue, 2021, 148: 106236. 

[37] Gong C, Niu TY, Gong JG*, Xuan FZ*. A time-dependent stress and strain estimation method for notched components under the displacement-controlled condition. Engineering Fracture Mechanics, 2021, 242: 107447. 

[36] Niu TY, Zhao P, Zhu G, Gong JG*, Xuan FZ*. Stress state dependent creep damage behavior of 9-12% Cr steel notched components. Materials Science and Engineering A, 2021, 804:140762. 

[35] 陈鼎,宫建国*,轩福贞. 电缆聚氯乙烯绝缘层热变形过程的数值分析与评价. 机械强度, 2020, 42(5): 1177-1183.

[34] Zhao P, Lu TY, Gong JG*, Xuan FZ. A modified stress field intensity approach for fatigue life prediction of components. Materials and Design, 2020, 190: 108537. 

[33] Niu TY, Gong C, Gong JG*, Xuan FZ*, Chen HF. Assessment on strain-based and stress-based design strategies for components at elevated temperatures: a comparative study. ASME Journal of Pressure Vessel Technology, 2020, 142(4): 041701.

[32] Niu TY, Gong C, Gong JG*, Xuan FZ*. Creep failure behavior of notched structure in the simulated steam turbine rotor: experimental and damage analysis. ASME Journal of Pressure Vessel Technology, 2020, 142(6): 061502. 

[31] Gong C, Fu-Hai Gao, Gong JG*, Xuan FZ*. Assessment on stress estimation method for creep evaluation of components at elevated temperature within elastic analysis routine. ASME Journal of Pressure Vessel Technology, 2021, 143(1): 011503. 

[30] 龚程, 宫建国, 高付海, 轩福贞. 基于应力参量的高温结构蠕变设计准则对比及案例分析.压力容器, 2019, 36(4): 15-21.

[29] 陈鼎,宫建国*,轩福贞. 电缆聚氯乙烯绝缘层热变形性能评价的影响因素研究. 绝缘材料, 2019, 52(4): 57-60. 

[28] 周忠强,惠虎,宫建国*,张亚林,许叶龙,李长青. 含非连续加强圈复土卧式容器的屈曲安全评价及影响因素分析. 压力容器,2019, 36(3): 44-49. 

[27] 刘芳,宫建国*,黑宝平,高付海,轩福贞. 核电部件屈曲设计方法的对比分析与案例研究. 压力容器,2019, 36(6): 18-26.

[26] 惠虎,咸苹苹,宫建国*. 基于直接法的多晶硅还原炉底盘结构安全性评估. 压力容器,2019, 36(7): 28-33. 

[25] 刘兆阳, 胡靖东, 宫建国, 曹健*,高付海,轩福贞. 示范快堆堆芯熔融物收集装置的安全分析. 原子能科学技术, 2019, 8: 1-6.

[24] Liu F, Gong JG, Gao FH, Xuan FZ*. A Creep Buckling Design Method of Elliptical Heads Based on the External Pressure Chart. ASME Journal of Pressure Vessel Technology, 2019, 141(3): 031203. 

[23] Gong JG, Gong C, Xuan FZ*, Chen HF. Notch effect on structural strength of components at elevated temperature under creep, fatigue and creep-fatigue loading conditions: phenomenon and mechanism. ASME Journal of Pressure Vessel Technology, 2019, 141: 050801.

[22] 夏齐炜,宫建国,轩福贞*. 耐热钢CrMoCoV表面裂纹疲劳扩展试验及考虑闭合效应的数值分析研究. 压力容器, 2018, 35(2): 1-7.

[21] 宫建国,陈浩峰,轩福贞. 线性匹配方法(LMM)及其用于高温部件安定与棘轮分析的案例研究. 压力容器, 2018, 35(3): 19-25. 

[20] 柏慧,赵景玉,宫建国*,轩福贞,惠虎. 热辐射作用对加氢反应器热箱部位温度及应力分布的影响分析. 压力容器, 2018, 35(4): 25-30.

[19] Wang RZ, Wang J, Gong JG, Zhang XC, Tu ST, Zhang CC. Creep-Fatigue Behaviors and Life Assessments in Two Nickel-Based Superalloys. Journal of Pressure Vessel Technology, 2018, 140(3): 031405.

[18] Lu YQ, Hui H, Gong JG. Influence of Welding Strength Matching Coefficient and Cold Stretching on Welding Residual Stress in Austenitic Stainless Steel. Journal of Materials Engineering and Performance, 2018, 27 (6), SI: 3131-3143.

[17] Wang RZ, Zhu XM, Zhang XC*, Tu ST*, Gong JG, Zhang CC. A generalized strain energy density exhaustion model allowing for compressive hold effect. International Journal of Fatigue, 2017, 104, 61-71.

[16] Ye S, Zhang XC*, Gong JG, Tu ST*, Zhang CC. Multi‐scale fatigue crack propagation in 304 stainless steel: experiments and modelling. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40: 1928–1941. 

[15] Wang RZ, Zhang XC*, Gong JG, Zhu XM, Tu ST*, Zhang CC. Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650° C based on cycle-by-cycle concept. International Journal of Fatigue, 2017, 97: 114-123. 

[14] Ye S, Gong JG, Tu ST*, Zhang XC*, Zhang CC. Local strain accumulation in fatigue crack propagation process of Ti‐6Al‐4V alloy. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(5): 836-849.

[13] Ye S, Gong JG, Zhang XC*, Tu ST*, Zhang CC. Effect of Stress Ratio on the Fatigue Crack Propagation Behavior of the Nickel-based GH4169 Alloy. Acta Metallurgica Sinica (English Letters), 2017, 30(9): 809-821. 

[12] 张效成,宫建国,轩福贞*. 蠕变断裂寿命外推方法及数据分散性处理研究. 压力容器, 2017, 34(7): 11-18.

[11] 古晋斌,宫建国*,惠虎. 基于极限载荷法的矩形接管结构设计及参数化分析. 压力容器, 2017, 34(4): 19-25.

[10] Gong JG*, Zhou ZQ, Xuan FZ. Buckling strength of cylindrical steel tanks under measured differential settlement: Harmonic components needed for consideration and its effect. Thin-Walled Structures, 2017, 119: 345-355. 

[9] Gong JG, Xia QW, Xuan FZ*, Evaluation of simplified creep design methods based on the case analysis of tee joint at elevated temperature, Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139(4): 041412. 

[8] Gong JG, Niu TY, Chen HF*, Xuan FZ*. Shakedown analysis of pressure pipeline with an oblique nozzle at elevated temperatures using the linear matching method. International Journal of Pressure Vessels and Piping, 2018, 159: 55-66. 

[7] Gong JG, Liu F, Xuan FZ*. On fatigue design curves for 2.25Cr-1Mo-V steel reactors at elevated temperature in Code Case 2605. Journal of Pressure Vessel Technology, Transactions of the ASME, 2018, 140(2): 021101. 

[6] Gong JG, Yu L, Wang F, Xuan FZ*. Effect of welding residual stress on the buckling behavior of storage tanks subjected to harmonic settlement. Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139(1): 011401.

[5] Gong JG, Xuan FZ*. Notch behavior of components under the stress controlled creep-fatigue condition: Weakening or strengthening?. Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139(1): 011407.

[4] 宫建国,温建锋,轩福贞*. 蠕变-疲劳载荷下高温结构的缺口效应研究进展. 机械工程学报, 2015, 51(24): 24-40.

[3] Gong JG, Tao J, Zhao J, Zeng S, Jin T*. Buckling analysis of open top tanks subjected to harmonic settlement. Thin-Walled Structures, 2013, 63: 37-43. 

[2] Gong JG, Tao J, Zhao J, Zeng S, Jin T*. Effect of top stiffening rings of open top tanks on critical harmonic settlement. Thin-Walled Structures, 2013, 65: 62-71.

[1] Gong JG, Cui WS, Zeng S, Jin T*. Buckling analysis of large scale oil tanks with a conical roof subjected to harmonic settlement. Thin-Walled Structures, 2012, 52: 143-148.

  

 

 

 

 






网页发布时间: 2019-05-16