项延训

项延训

E-mail: yxxiang@ecust.edu.cn
职位: 院党委书记,院长(兼)

职称: 教授,博士生导师;国家自然科学基金优青获得者。研究生招生专业:博士招生专业:080703动力机械及工程、080202机械电子工程;硕士招生专业:080706化工过程机械、080202机械电子工程

 

 

 

 


个人简介:

2000年毕业于同济大学,获应用物理学士学位;2003年毕业于同济大学,获声学硕士学位;2011年毕业于华东理工大学机械与动力工程学院,获化工过程机械博士学位。2005年至今任职于华东理工大学,教授,博士生导师;作为项目负责人主持4项国家自然科学基金项目、2项国家重点研发计划课题、1项装备预研教育部联合基金项目,以及多项省部级项目和企业合作科研项目,获省部级科技成果奖励3次。获2017年上海市魏墨盦声学奖,获2016年国家自然科学基金委优青项目资助,获2016年上海市人才发展资金资助,获2015年度上海市自然科学奖一等奖(第1完成人),获2014年上海市科技启明星计划,获上海市优秀博士论文(2011);发表SCI论文50余篇,授权/申请专利11项。

 

联系方法:

上海市梅陇路130号华东理工大学机械与动力工程学院201室(实验17楼),邮编:200237。电话:021-64253068;yxxiang@ecust.edu.cn

研究方向

主要从事材料/构件服役相关的超声无损检测及评价技术研究,包括:早期微损伤的非线性超声导波检测及定位表征、超声导波损伤检测及定位成像、超声相控阵成像、复杂结构中残余应力的超声表征等。研究内容涉及超声学、材料力学、信号处理等交叉学科。

承担科研项目

[1]国家重点研发计划课题:“严苛环境下安全性能衰退在线感知和失效预警”,项目负责人,批准号:2018YFC0808806,2018-2021;

[2] 国家自然科学基金优青项目:“非线性超声导波”,项目负责人,批准号:11622430, 2017-2019年;

[3] 国家自然科学基金面上项目:“基于非线性超声导波混频的结构塑性损伤定位及表征方法”,项目负责人,批准号:11774090, 2018-2021年;

[4] 国家自然科学基金面上项目:“微细观尺度下材料蠕变行为的非线性兰姆波评价理论与表征方法”,项目负责人,批准号:11474093,2015-2018年;

[5] 装备预研教育部联合基金项目:“极端条件服役结构健康监测方法及系统”,项目负责人,2018-2019年;

[6] 国家重点研发计划项目子任务:“承压设备早期损伤的非线性导波混频定位及表征方法”,项目负责人,2016-2019年

[7] 国家自然科学基金青年项目:“材料蠕变损伤和微组织演化的非线性超声兰姆波评价方法”,项目负责人,项目批准号:11004056,2011-2013年;

[8] 上海市科技启明星计划项目:“微细观尺度下材料蠕变行为的非线性超声导波表征技术”,项目负责人,项目批准号:14QA1401200,2014-2016年;

[9] 上海市人才发展资金资助计划:“材料蠕变行为的非线性兰姆波评价理论与表征方法”,项目负责人,2016-2018。

获奖成果

[1]Maoxun Sun, Yanxun Xiang*, Mingxi Deng, Bo Tang, Wujun Zhu and Fu-Zhen Xuan. Experimental and numerical investigations of nonlinear interaction of counter-propagating Lamb waves. Applied Physics Letters, 2019, 114: 011902.

[2]. Ben Li, Rong Liu, Wujun Zhu, Qiaoxin Zhang*, Jingui Yu, Yanxun Xiang*, Hongyan Zhou. Research on the interaction between surface laser-pit of Ni-based single crystal alloy and lamb wave under micro-conditions. Applied Surface Science,2019, 483: 840-848.

[3]Ming-Liang Li, Liang-Bing Liu, Guang-Jian Gao, Ming-Xi Deng*, Ning Hu, Yan-Xun Xiang*, and Wu-Jun Zhu. Response features of nonlinear circumferential guided wave on early damage in inner layer of a composite circular tube. Chinese Physics B, 2019, 28(4): 044301.

[4]Yanxun Xiang, Da Teng, Mingxi Deng, Yunze Li , Changjun Liu and Fuzhen Xuan*. Characterization of Local Residual Stress at Blade Surfaces by the V(z) Curve Technique. Metals,2018, 8: 651-662.

[5]. Wujun Zhu, Yanxun Xiang*, Chang-Jun Liu, Mingxi Deng, Fu-Zhen Xuan. A feasibility study on fatigue damage evaluation using nonlinear Lamb waves with group-velocity mismatching. Ultrasonics, 2018, 90: 18-22.

[6]. Weibin Li, Mingxi Deng*, Ning Hu, Yanxun Xiang*. Theoretical analysis and experimental observation of frequency mixing response. Journal of Applied Physics, 2018. 124: 044901.

[7]. Wujun Zhu, Yanxun Xiang*, Chang-Jun Liu, Mingxi Deng* and Fu-Zhen Xuan. Symmetry properties of second harmonics generated by antisymmetric Lamb waves. Journal of Applied Physics, 2018. 123: 104902.

[8]. Wujun Zhu, Yanxun Xiang*, Chang-jun Liu, Mingxi Deng, Congyun Ma and Fu-zhen Xuan. Fatigue Damage Evaluation Using Nonlinear Lamb Waves with Quasi Phase-Velocity Matching at Low Frequency. Materials, 2018, 11, 1920; doi:10.3390/ma11101920.

[9] Maoxun Sun, Yanxun Xiang*, Mingxi Deng, Jichao Xu, Fu-Zhen Xuan. Scanning non-collinear wave mixing for nonlinear ultrasonic detection and localization of plasticity. NDT&E International, 2018. 93: 1-6.

[10]. Mingliang Li, Mingxi Deng, Guangjian Gao, Yanxun Xiang*. Modeling of second-harmonic generation of circumferential guided wave propagation in a composite circular tube. Journal of Sound and Vibration, 2018. 421: 234-245.

[11]Mingliang Li, Mingxi Deng*, Guangjian Gao, Yanxun Xiang*. Mode pair selection of circumferential guided waves for cumulative second-harmonic generation in a circular tube. Ultrasonics, 2018, 82: 171-177.

[12]. Han Chen, Ming-Xi Deng*, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang*. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate. Chinese Physics Letters, 2018, 35(11): 114302.

[13] Yanxun Xiang, Congyun Ma, Mingxi Deng, Fu-Zhen Xuan* and Jianfeng Zhang. Lamb wave mode and frequency selection for assessment of creep damage in titanium alloy plates. Insight, 2017, 59(4): 196-202.

[14] Mingxi Deng*, Guang-Jian Gao, Yan-Xun Xiang*, Ming-Liang Li. Assessment of accumulated damage in circular tubes using nonlinear circumferential guided wave approach A feasibility study. Ultrasonics, 2017, 75: 209-215.

[15]Wei-Bin Li, Ming-Xi Deng*, Yan-Xun Xiang*. Review on second-harmonic generation of ultrasonic guided waves in solid media: (I) theoretical analyses. Chinese Physics B, 2017, 26(11): 114302.

[16] Ming-Liang Li, Mingxi Deng*, Guang-Jian Gao, Han Chen, Yan-Xun Xiang*. Influence of change in inner layer thickness of composite circular tube on second-harmonic generation by primary circumferential ultrasonic guided wave propagation. Chinese Physics Letters, 2017, 34(6): 064302.

[17] Yanxun Xiang, Wujun Zhu, Mingxi Deng, Fu-Zhen Xuan*, and Chang-Jun Liu. Generation of cumulative second-harmonic ultrasonic guided waves with group velocity mismatching: Numerical analysis and experimental validation. EPL (Europhysics Letters), 2016, 116: 34001.

[18] Yanxun Xiang, Wujun Zhu, Mingxi Deng, Fu-Zhen Xuan*. Experimental and numerical studies of nonlinear ultrasonic responses on plastic deformation in weld joints. Chinese Physics B, 2016, 25(2): 024303.

[19] Wujun Zhu, Mingxi Deng, Yanxun Xiang*, Fu-Zhen Xuan, Changjun Liu, Yi-Ning Wang. Modeling of ultrasonic nonlinearities for dislocation evolution in plastically deformed materials Simulation and Experimental Validation. Ultrasonics, 2016, 68: 134-141.

[20] Wu-Jun Zhu, Ming-Xi Deng, Yan-Xun Xiang*, Fu-Zhen Xuan, Chang-Jun Liu. Second Harmonic Generation of Lamb Wave in Numerical Perspective. Chinese Physics Letters, 2016, 33(10):104301.

[21] Ming-Liang Li, Ming-Xi Deng*, Wu-Jun Zhu, Guang-Jian Gao, Yan-Xun Xiang*. Numerical Perspective of Second-Harmonic Generation of Circumferential Guided Wave Propagation in a Circular Tube. Chinese Physics Letters, 2016, 33(12):124301.

[22] Yunze Li, Chang-Jun Liu, Yanxun Xiang*, Ying Li. Characterization of local residual stress on curved blades by ultrasound. 2016 IEEE International Ultrasonics Symposium (IUS), DOI: 10.1109/ULTSYM.2016.7728647.

[23] Tiantian Hou, Yanxun Xiang*, Fuzhen Xuan. Contribution of dislocation evolution to acoustic nonlinearity in plastically damaged materials. 2016 IEEE International Ultrasonics Symposium (IUS), DOI: 10.1109/ULTSYM.2016.7728641.

[24] Yanxun Xiang, Wujun Zhu,  Chang-Jun Liu, Fu-Zhen Xuan*, Yi-Ning Wang, Wen-Chuan Kuang. Creep degradation characterization of titanium alloy using nonlinear ultrasonic technique. NDT&E International, 2015, 72: 41-49.

[25] Yanxun Xiang, Mingxi Deng, Chang-Jun Liu, Fu-Zhen Xuan*. Conntribution of the mixed dislocation to the acoustic nonlinearity in plastic deformed materials. Journal of Applied Physics, 2015, 117: 214903.

[26] Wujun Zhu, Yanxun Xiang*, Fu-Zhen Xuan, Haiyan Zhang. Effect of mixed dislocations on nonlinear acoustic responses in plastic deformation materials. Physics Procedia, 2015, 70: 420-423.

[27] Yanxun Xiang, Mingxi Deng, Fu-Zhen Xuan*. Creep damage characterization using nonlinear ultrasonic guided wave method: a mesoscale model. Journal of Applied Physics, 2014,115: 044914.

[28] Yanxun Xiang, Mingxi Deng, Fu-Zhen Xuan*. Thermal degradation evaluation of HP40Nb alloy steel after long term service using a nonlinear ultrasonic technique. Journal of Nondestructive Evaluation, 2014, 33: 279-287.

[29] Yanxun Xiang, Mingxi Deng, Fu-Zhen Xuan*, Chang-Jun Liu. Effect of precipitate-dislocation interactions on generation of nonlinear Lamb waves in creep-damaged metallic alloys. Journal of Applied Physics, 2012,111: 104905.

[30] Xiang Yan-Xun, Deng Ming-Xi, Xuan Fu-Zhen*, Chen Hu, Chen Ding-Yue. Creep damage evaluation of titanium alloy using nonlinear ultrasonic Lamb waves. Chinese Physics Letters, 2012, 29(10):106202.

[31] Yanxun Xiang, Mingxi Deng, Fu-Zhen Xuan*. Cumulative second-harmonic analysis of ultrasonic Lamb waves for ageing behavior study of modified-HP austenite steel. Ultrasonics, 2011, 51: 974-981.

[32] Yanxun Xiang, Mingxi Deng, Fu-Zhen Xuan*, Chang-Jun Liu. Experimental study of thermal degradation in ferritic Cr-Ni alloy steel plates using nonlinear Lamb waves. NDT&E International, 2011, 44: 768-774.

[33] Xiang Yan-Xun, Xuan Fu-Zhen*, Deng Ming-Xi. Evaluation of thermal degradation induced material damage using nonlinear Lamb waves. Chinese Physics Letters, 2010, 27(1): 016202.

[34] Yanxun Xiang, Mingxi Deng, Fu-Zhen Xuan*. Analysis of second-harmonic generation of Lamb waves using a combined method in a two-layered solid waveguide. Journal of Applied Physics. 2009, 106: 024902.

[35] Xiang Yan-Xun*, Deng Ming-Xi. Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate. Chinese Physics B. 2008, 17(11): 4232-4241.

[36] 陈天瑞, 项延训*, 陈 虎, 轩福贞, 陈定岳. 基于相位-频率测量的材料残余应力超声表征方法. 机械工程学报, 2016. 52(22): 9-14.

[37] 赵珊珊, 邓明晰, 项延训*, 轩福贞. 超声Lamb波二次谐波发生效率分析与模式选择. 声学学报, 2017. 42(3): 290-296. 

[38] 叶有俊, 朱武军, 王一宁, 项延训*. 钛合金蠕变损伤的非线性Lamb波检测. 声学技术, 2016, 35(4): 345-348.

[39] 项延训. HP40Nb 合金钢高温劣化的非线性超声评价. 声学技术, 2012, 31(6): 578-582.


网页发布时间: 2019-05-16