王国珍

王国珍
E-mail: gzwang@ecust.edu.cn / wanggz1965@163.com
职位: 博导
职称: 教授

 

 

 




个人简介:  

 196511月生,1985年获甘肃工业大学机械系学士学位,1988年获上海交通大学工学硕士学位,2002年获兰州理工大学材料加工工程博士学位。从1988年起历任兰州理工大学(原甘肃工业大学)材料科学与工程学院助教、讲师、副教授、焊接教研室主任、焊接研究所副所长,1998年任教授,2004年评为博士生导师。2007年任华东理工大学机械与动力工程学院教授,博士生导师。其中:1991年至1992年在日本大阪大学熔接工学研究所研修;2005年至2006年在美国加州大学伯克莱分校(University of California, Berkeley)材料系和劳伦斯国家实验室(Lawrence Berkeley National Lab.)访问研究(由美国工程院院士、材料系主任、国际著名材料强度与断裂专家Ritchie教授邀请)。在科研工作中主要对金属材料及其焊接区的断裂机理与局部断裂模型、高温蠕变与弹塑性断裂力学中的裂尖拘束效应、核电设备结构完整性原理与安全评价技术、纳入拘束效应的结构完整性评价与蠕变寿命预测等进行了深入的研究。取得的研究成果以第一/二作者和通讯作者发表论文260多篇,其中有150多篇发表于学科国际顶尖和著名期刊,被SCIEI收录。获得国家发明专利7项,研究论文被国内外相关研究机构及最近由Elsevier出版的国际专著《Micromechanism of Cleavage Fracture of Metals》大篇幅引用。十余种国际著名期刊审稿人,20162018年两次获得国际工程断裂力学权威期刊《Engineering Fracture Mechanics》杰出审稿贡献奖。先后承担国家自然科学基金、国家863国家重点研发计划项目、上海市科技攻关、上海市产学研、核电领域相关企业项目等三十余项。中国机械工程学会材料分会理事。曾入选甘肃省“333”“555”人才工程第一层次。2003年评为甘肃省优秀专家。2009年度华东理工大学校先进工作者,20122014年度华东理工大学优秀研究生指导教师、优秀研究生任课教师,2016年度华东理工大学优秀教育工作者。1997年兰州理工大学教书育人奖,19992000年度连续两届被评为兰州理工大学学生爱戴的老师。


  

联系方法:

上海市梅陇路130号 华东理工大学机械与动力工程学院, 邮编:200237

  


  

研究方向

       材料与结构的损伤断裂,核电设备结构完整性原理与安全评价技术,蠕变损伤/断裂力学与高温部件寿命评价技术、纳入拘束效应的结构完整性评价方法,焊接冶金与焊接力学,材料力学行为(包括金属材料力学性能与微观组织、损伤断裂、疲劳、蠕变、应力腐蚀等),机械构件失效分析等。

承担科研项目

近年来承担的主要科研项目:
(1)负责,国家863项目: “第三代核电压力容器寿命与可靠性评价关键技术”, 2009.6-2011.12。

(2)负责, 国家自然科学基金项目: “纳入面内与面外统一裂尖拘束的结构安全评价方法”,2016.1-2019.12.

(3)负责, 国家自然科学基金项目: “几何与材料复合拘束下的核电容器接管安全端LBB分析研究”, 2011.1-2013.12.

(4)负责, 国家自然科学基金项目: “纳入裂尖拘束效应的高温部件蠕变裂纹扩展寿命评价”, 2014.1-2017.12.

(5)参加, 国家自然科学基金重点项目:“高温装置结构完整性保障关键基础问题的研究”, 2009.1-2012.12.
(6)负责,上海市重点科技攻关项目子课题:“核I级焊材腐蚀性能研究”,2010.6-2012.6.

(7)负责,大型先进压水堆核电站国家重大专项计划--外协项目: “非能动余热排出热交换器胀管接头性能分析”,2013.7-2014.12.

(8)负责,上海市产学研合作项目:“三代及改进型核岛主设备接管安全端接头设计、制造技术及性能研究”, 2014.6-2016.12.

(9)负责,上海航天控制工程研究所课题:“管弹簧材料性能及疲劳分析”,2013.1-2014.12.

(10)参加,国家自然科学基金项目:“蠕变条件下跨尺度裂纹扩展速率的统一模型”,2008.1-2010.12.
(11)参加,国家863项目:“先进汽轮机关键部件的全寿命预测技术”,2007.9-2008.12.

(12)参加,国家重点研发计划项目:严苛环境下典型承压类特种设备结构安全性评价及失效预防技术;参加课题三:基于损伤分级的多尺度失效评价方法,2018.7-2021.6.

获奖成果

1.《低合金高强钢及钛合金解理断裂机理的研究》,2006,甘肃省自然科学二等奖。

2.《高温过程装备结构完整性原理与应用》,2010,中国石油和化学工业联合会,科技进步一等奖.

3.《低合金高强钢热预应力增韧机理研究》,2004, 甘肃省高校科技进步二等奖。

4.《低合金钢下平台及韧—脆转变区解理断裂机理的研究》,1998,甘肃省高校科技进步一等奖和甘肃省科技进步三等奖。

5.《焊接冶金及焊接区韧性》,2002,甘肃省高校科技进步二等奖。

6.《低合金钢焊缝区解理断裂机理,判据和模型》,1994甘肃省高校科技进步一等奖,1996甘肃省科技进步三等奖。

7. 《全寿命预测关键技术及其在大型汽轮机上的应用》,2010,上海市科技进步一等奖。

8.《基于拘束理论的重大承压设备断裂评价与调控技术》,2018,上海市技术发明一等奖。

代表性著作

  1. H.S. Ma, G.Z. Wang*, S. Liu, S.T. Tu, F.Z. Xuan: Three-dimensional analyses of unified characterization parameter of in-plane and out-of-plane creep constraint. Fatigue & Fracture of Engineering Materials and Structures2016, 39: 251–263

  2. J.Z. He, G.Z. Wang*S.T. Tu, F.Z. Xuan. Characterization of 3-D creep constraint and creep crack growth rate in test specimens in ASTM-E1457 standard. Engineering Fracture Mechanics, 2016, 168: 131–146.   

  3. H.S. Ma, G.Z. Wang*S.T. Tu, F.Z. Xuan. Unified correlation of geometry and material constraints with creep crack growth rate of welded joints. Engineering Fracture Mechanics, 2016, 163: 220-235.

  4. H.S. Ma, G.Z. Wang*S.T. Tu, F.Z. Xuan. Unified correlation of in-plane and out-of-plane creep constraints with creep crack growth rate. International Journal of Pressure Vessels and Piping, 2016, 139-140: 47-60.

  5. H.S. Ma, G.Z. Wang*, S. Liu, S.T. Tu, F.Z. XuanIn-plane and out-of-plane unified constraint-dependent creep crack growth rate of 316H steel. Engineering Fracture Mechanics, 2016, 155: 88-101.

  6. X. Xu, G.Z. Wang*F.Z. XuanS.T. Tu. Effects of creep ductility and notch constraint on creep fracture behavior in notched bar specimens. Materials at High Temperatures, 2016, 33: 208-217.

  7. B.R. Yan, G.Z. Wang*F.Z. XuanS.T. Tu. Establishment of unified correlation of in-plain and out-of-plain constraints with ductile fracture toughness of steel. Applied Mechanics and Materials, 2016, 853: 22-27.

  8. S. Liu, G.Z. Wang*S.T. Tu, F.Z. Xuan. Creep crack growth prediction and assessment incorporating constraint effect for pressurized pipes with axial surface cracks.  Engineering Fracture Mechanics, 2016, 15492-110.

  9. S. Liu, G.Z. Wang*F.Z. XuanS.T. Tu. Effects of creep properties of materials on creep crack-tip constraint parameter R*Materials at High Temperatures, 2016, 33: 198-207.

  10. M.Y. Mu, G.Z. Wang*S.T. Tu, F.Z. Xuan. Three-dimensional analyses of in-plane and out-of-plane crack-tip constraint characterization for fracture specimens. Fatigue & Fracture of Engineering Materials and Structures,2016, 39: 1461–1476.

  11. K. Fan, G.Z. Wang*F.Z. XuanS.T. Tu. Local failure behavior of a dissimilar metal interface region with mechanical heterogeneity. Engineering Failure Analysis, 2016, 59: 419-433.

  12. K. Fan, G.Z. Wang*F.Z. XuanS.T. TuCorrelation of material constraint with fracture toughness of interface regions in a dissimilar metal welded joint. Fatigue & Fracture of Engineering Materials and Structures. 2016; 39: 1251–1262.

  13. K. Fan, G.Z. Wang*F.Z. XuanS.T. TuGeometry and material constraint effects on fracture resistance behavior of bi-material interfaces. International Journal of Fracture, 2016; 201:143–155.

  14. X.M. Song, G.Z. Wang*S.T. Tu, F.Z. Xuan. Effect of residual stress on creep fracture behavior in P92 steel welded joint. Materials at High Temperatures, 2016, DOI 10.1179/1878641315Y.0000000021.

  15. H.S. Ma, G.Z. Wang*, F.Z. Xuan, S.T. Tu: Unified characterization of in-plane and out-of-plane creep constraint based on crack-tip equivalent creep strain. Engineering Fracture Mechanics2015, 142: 1-20.

  16. S. Liu, G.Z. Wang*, S.T. Tu, F.Z. Xuan. Creep constraint analysis and constraint parameter solutions for circumferential surface cracks in pressurized pipesEngineering Fracture Mechanics1481–14.

  17. S.Liu, G.Z.Wang*, F.Z. Xuan, S.T.Tu. Three-dimensional finite element analyses of in-plane and out-of-plane creep crack-tip constraints for different specimen geometries. Engineering Fracture Mechanics, 2015, 133: 264–280.

  18. J.P. Tan, S.T Tu*, G.Z. Wang*,F.Z. Xuan. Characterization and correlation of 3-D creep constraint between axially cracked pipelines and test specimens. Engineering Fracture Mechanics, 2015, 136: 96-114.

  19. X.M. Song, G.Z. Wang*, F.Z. Xuan, S.T. Tu. Investigation of residual stress effects on creep crack initiation and growth using local out-of-plane compression. Engineering Fracture Mechanics149: 45-57.

  20. J.W. Zhang, G.Z. Wang*, F. Z. Xuan, S. T. Tu: In-plane and out-of-plane constraint effects on creep crack growth rate in Cr-Mo-V steel for a wide range of C*Materials at High Temperatures2015, 32: 512-523.

  21. J.W. Zhang, G.Z. Wang*, F.Z. Xuan, S.T. Tu. Effect of stress dependent creep ductility on creep crack growth behavior of steels for wide range of C*. Materials at High Temperatures2015, 32: 369-376.

  22. J.W. Zhang, G.Z. Wang*, F.Z. Xuan, S.T. Tu. of ductility in the prediction of creep crack growth rate in Cr-Mo-V steel. Materials and Design, 2015, 65: 644-651.

  23.  Jingwei Zhang, Guozhen Wang*, Fuzhen Xuan Shantung Tu. Numerical prediction of creep crack growth rate in Cr-Mo-V steel for specimens with different constraints. Applied Mechanics and Materials, 2015, 750: 32-40.

  24. M.Y. Mu, G.Z. Wang*, F.Z. Xuan, S.T. Tu. Unified correlation of wide range of in-plane and out-of-plane constraints with cleavage fracture toughness. Theoretical and Applied Fracture Mechanics, 2015, 80: 121-132.

  25. K. Fan, G. Z. Wang*, F. Z. Xuan, S.T. Tu. Local fracture resistance behavior of interface regions in a dissimilar metal welded joint. Engineering Fracture Mechanics2015,136: 279-291.

  26. K. Fan, G. Z. Wang*, F. Z. Xuan, S.T. Tu. Effects of work hardening mismatch on fracture resistance behavior of bi-material interface regions. Materials and Design, 2015, 68: 186-194. 

  27. Kai Fan, Guozhen Wang*, Jie Yang, Fuzhen Xuan, Shantung Tu. Numerical analysis of constraint and strength mismatch effects on local fracture resistance of bimetallic joints. Applied Mechanics and Materials, 2015, 750: 24-31.

  28. K. Fan, G. Z. Wang*, F. Z. Xuan, S.T. T. Local failure behavior of a dissimilar metal interface region with mechanical heterogeneity. Engineering Failure Analysis, 2016, 59:419-433. 

  29. G. Chen, G.Z. Wang*, J.W. Zhang, F.Z. Xuan, S.T. Tu. Effects of initial crack positions and load levels on creep failure behavior in P92 steel welded joint. Engineering Failure Analysis, 2015, 47: 56-66.

  30. G. Chen, G.Z. Wang*, F.Z. Xuan, S.T. Tu. Effects of HAZ widths on creep crack growth properties of welded joints. Welding in the World, 2015, 59: 851-860.

  31. Y.L. Chen, G.Z. Wang*, F.Z. Xuan, S.T. Tu. Crack-tip constraint analyses and constraint-dependent LBB curves for circumferential through-wall cracked pipes.Nuclear Engineering and Design, 2015, 285: 75-83.

  32. J. Wang, G.Z.Wang*, F. Z. Xuan, S.T. Tu. Constraint-dependent J-R curves of a dissimilar metal welded joint for connecting pipe-nozzle of nuclear pressure vessel. Journal of Pressure Vessel Technology2015, 137, 1-8.

  33. J. Yang, G.Z. Wang*, F.Z. Xuan, S.T. Tu, C.J. Liu. Out-of-plane constraint effect on local fracture resistance of a dissimilar metal welded joint. Materials and Design, 2014, 55:542–550.

  34. J.W. Zhang, G. Z. Wang*, F. Z. Xuan, S. T. Tu: Prediction of creep crack growth behavior in Cr-Mo-V steel specimens with different constraints for a wide range of C*, Engineering Fracture Mechanics, 2014, 132: 70-84.

  35. J.W. Zhang, G.Z. Wang*, F.Z. Xuan, S.T. Tu. of ductility in the prediction of creep crack growth rate in Cr-Mo-V steel. Materials and Design, 2015, 65: 644-651.

  36. S. Liu, G.Z. Wang*, F.Z. Xuan, S.T. Tu. for axial semi-elliptical surface cracks in pressurized pipes. Engineering Fracture Mechanics2014, 132: 1-15.

  37. M.Y. Mu, G.Z. Wang*, F.Z. Xuan, S.T. Tu. Unified parameter of in-plane and out-of-plane constraint effects and its correlation with brittle fracture toughness of steel. International Journal of Fracture, 2014, 190: 87-98

  38. Kai Fan, Guozhen Wang*, Jie Yang, Fuzhen Xuan, Shantung Tu. Numerical analysis of constraint and strength mismatch effects on local fracture resistance of bimetallic joints. The 2014 International Symposium on Structural Integrity (ISSI-2014), August 20-24, 2014, Lanzhou, China.

  39. G. Chen, G.Z. Wang*, F.Z. Xuan, S.T. Tu. Mismatch effect in creep properties on creep crack growth behavior in welded joints. Materials and Design, 2014, 63: 600–608.

  40. J.P. Tan, G.Z. Wang*, S.T Tu, F.Z. Xuan. Load-independent creep constraint parameter and its application.Engineering Fracture Mechanics2014, 116: 41-57.

  41. J. Yang, G.Z.Wang*, F.Z. Xuan, S.T. Tu. A unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint. Engineering Fracture Mechanics2014, 115: 296-307.

  42. J. Wang, G.Z.Wang*, F. Z. Xuan, S.T. Tu. Derivation of constraint-dependent Jcurves based on modified -stress parameter and GTN model for a low-alloy steel. International Journal of Fracture, 2013, 183:155-168.

  43. L.Y. Du, G.Z.Wang*, F.Z. Xuan, S.T.Tu. Effects of local mechanical and fracture properties on LBB behavior ofa dissimilar metal welded joint in nuclear power plants. Nuclear Engineering and Design, 2013, 265:145– 153.

  44. G.Z. Wang*, H.T. Wang, F.Z. Xuan, S.T. Tu. Local fracture behavior and integrity assessment of a dissimilar metal welded joint in nuclear power systems. 13th International Conference on Fracture (ICF 13), 16-21 June, 2013, Beijing, China.

  45. J.P. Tan, S.T. Tu, G.Z. Wang*, F.Z. Xuan. Effect and mechanism of out-of-plane constraint on creep crack growth behavior of a Cr-Mo-V steel. Engineering Fracture Mechanics2013, 99: 324-334.

  46. J. Yang, G.Z. Wang*, F.Z. Xuan, S.T. Tu, C.J. Liu. An experimental investigation of in-plane constraint effect on local fracture resistance of a dissimilar metal welded joint. Materials and Design, 2013, 44:179–189.

  47. G.Z. Wang*, H.T. Wang, F.Z. Xuan, S.T. Tu. Local fracture behavior and integrity assessment of a dissimilar metal welded joint in nuclear power systems. 13th International Conference on Fracture (ICF 13), 16-21 June, 2013, Beijing, China.

  48. H.T. Wang, G.Z. Wang*, F.Z. Xuan, C.J. Liu, S.T. Tu.mechanical properties of a dissimilar metal welded joint in nuclear power systems. Material Science and Engineering A. 2013, 568: 108–117.

  49. L.Y. Chen, G.Z. Wang*, J.P. Tan, F.Z. Xuan, S.T. Tu Effects of residual stress on creep damage and crack initiation in notched CT specimens of a Cr-Mo-V steel. Engineering Fracture Mechanics. 2013, 97: 80-91.

  50. J. Yang, G.Z. Wang*, F.Z.Xuan, S.T. TuFatigue & Fracture of Engineering Materials and Structures2013, 36: 504-514.

  51. N. Gong, G.Z. Wang*, F.Z. Xuan, S.T. Tu. Leak-before-break analysis of a dissimilar metal welded joint for connecting pipe-nozzle in nuclear power plants. Nuclear Engineering and Design. 2013, 255: 1-8.

  52. N. Gong, G.Z. Wang*, F.Z. Xuan, S.T. TuEffects of initial crack location on failure assessment curves indissimilar weld joints in nuclear power plants. Journal of Pressure Vessel Technology. 2012, 134:1-7.

  53. H.T. Wang, G.Z. Wang*, F.Z. Xuan, S.T. Tu. a dissimilar metal welded joint in nuclear power plant. Engineering Failure Analysis. 2013, 28: 134-148.

  54. H.T. Wang, G.Z. Wang*, F.Z. Xuan, S.T. Tu. An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint. Materials and Design. 2013,44:179–189.

  55. J.P. Tan, G.Z.Wang*, F.Z. Xuan, S.T. Tu. Correlation of creep crack-tip constraint between axially cracked pipelines and test specimens. International Journal of Pressure Vessels and Piping. 2012, 98:16-25.

  56. P.J. Sun, G.Z. Wang*, F.Z. Xuan, S.T. Tu, Z.D. Wang. Three-dimensional numerical analyses of out-of-plane creep crack-tip constraint in compact tension specimensInternational Journal of Pressure Vessels and Piping2012, 96-97: 78-89.

  57. Haitao Wang, Guozhen Wang*, Fuzhen Xuan, Changjun Liu, Shantung Tu.Local mechanical properties and microstructures of Alloy52M dissimilar metal welded joint between A508 ferritic steel and 316L stainless steel. Advanced Materials Research. 2012; 509: 103-110.

  58. J. P. Tan, G. Z. Wang*, F. Z. Xuan and S. T. Tu. Experimental investigation of geometry constraint effect on creep crack growth. APCFS-MM 2012 : Asian Pacific Conference on Fracture and Strength –Mechanics and Materials. May 13-16, 2012, Busan, Korea.

  59. S.T. Tu, G.Z. Wang*, J.M. Gong .Proceedings of the6th Cross-Strait Conference onAdvanced Engineering MaterialsNovember 8-11, 2011, Nanjing, China. Special Issue of Advanced Materials ResearchVolume 509, 2012,

  60. G.Z. Wang* , B.K. Li, F.Z. Xuan, S.T. Tu. Numerical investigation on the creep crack-tip constraint induced by loading configurations of specimens. Engineering Fracture Mechanics2012, 791-14. 

  61. Jianping Tan, Guozhen Wang*, Fuzhen Xuan, Shan-Tung Tu, Zhengdong Wang. Effect of the out-of-plane constraint on creep crack growth property of Cr-Mo-V type steel. Proceedings of the ASME 2011 Pressure Vessels & Piping Division Conference, PVP2011, July 17-21, 2011, Baltimore, Maryland, USA. (PVP2011-57300).

  62. Zhengjun GuGuozhen Wang*, Fuzhen Xuan, Shantung Tu. Welding residual stress and crack driving force for centerhole control rod drive mechanism nozzles in AP1000 RPV head. 2011 International Symposium on Structural Integrity: Structural Integrity in Nuclear Engineering, October 27-30, 2011, Hefei, China.

  63. H.T. Wang, G.Z. Wang*. Numerical investigation of ductile crack growth behavior in a dissimilar metal welded joint.Nuclear Engineering and Design, 20112413234–3243.

  64. G.Z. Wang*, P.J.Sun, B.K. Li, F.Z. Xuan, S.T. Tu. Investigation on the creep crack-tip constraint Induced by specimen geometry and loading configuration. ESIA11 Conference– Engineering Structural Integrity Assessment: design, fabrication, operation and disposal, 24 – 25 May 2011, Manchester, UK.

  65. Jianping Tan, Guozhen Wang*, Fuzhen Xuan, Shan-Tung Tu. Creep crack growth in a Cr-Mo-V Type steel: Experimental observation and prediction. Acta Metallurgica Sinica, 2011; 24(2): 81-91.

  66. P.J. Sun, G.Z. Wang*, F.Z. Xuan, S.T. Tu, Z.D. Wang. Quantitative characterization of creep constraint induced by crack depths in compact tension specimens. Engineering Fracture Mechanics2011; 78: 653-665.

  67. G.Z. Wang*, X.L Liu, F.Z. Xuan , S.T. Tu. Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens. International Journal of Solids and Structures, 2010, 47:51-57.

  68. G.Z. Wang*, F.Z. Xuan, S.T. Tu, Z.D. Wang. Effects of triaxial stress on martensite transformation, stress–strain and failure behavior in front of crack tips in shape memory alloy NiTi. Materials Science and Engineering A2010527:1529–1536.

  69. G.Z. Wang*, H. Wang , F.Z. Xuan , S.T. Tu , Z.D. Wang.Effects of void damage induced by warm prestressing (WPS) on cleavage fracture of notched steel specimens. Engineering Fracture Mechanics, 2009, 76:1010–1023.

  70. G.Z.Wang*, Y.L. Wang, F.Z. Xuan, S.T.Tu, Z.D Wang.Cleavage fracture behavior of a C–Mn vessel steel at various loading rates in notched specimens. Int J Pressure Vessels Piping, 2008, 85:720–727.

  71. G.Z. Wang*. Effect of martensite transformation on fracture behavior of shape memory alloy NiTi in a notched specimen. International Journal of Fracture, 2007, 146:93-104.

  72. G.Z. Wang*Y.L. Wang. Effects of loading rate, notch geometry and loading mode on the local cleavage fracture stress of a C–Mn steel. International Journal of Fracture, 2007, 146:105-121.

  73. G.Z. Wang*. A finite element analysis of evolution of stress–strain and martensite transformation in front of a notch in shape memory alloy NiTi. Material Science and Engineering A. 2007, 460-461:383-391.

  74. G.Z. Wang*. Effects of notch geometry on stress–strain distribution,n martensite transformation and fracture behavior ishape memory alloy NiTi. Material Science and Engineering A. 2006, 434:269-279.

  75. G.Z. Wang*, Y.L. Wang, J.H. Chen. Effects of loading rate on the local cleavage fracture stress σf in notched specimens. Engineering Fracture Mechanics, 2005, 72:675–689.

  76. G.Z. Wang*, X.C. Ren, J.H. Chen. Effects of Loading Rate on Fracture Beahvior of Low-Alloy Steel with Different Grain Sizes. Metallurgical & Materials Transactions A: June 2004, 35A: 1765-1778.

  77. G. Z. Wang*, Y. G. Liu and J. H. Chen.Investigation of cleavage fracture initiation in notched specimen of a C-Mn steel with carbides and inclusions. Material Science and Engineering A. 2004, 369:181-191.

  78. G.Z. Wang*, J.G. Wang, J.H. Chen. Effects of geometry of notched specimens on the local cleavage fracture stress σf of C-Mn steel. Engineering Fracture Mechanics.2003, 70: 2499-2512.

  79. G.Z. Wang*, X. C. Ren and J. H. Chen: Change of critical events of cleavage fracture with variation of loading rate in notched specimens of steel, International Journal of Fracture. 2003, 119:L61-L66.

  80. J. H. Chen, Q. Wang, G. Z. Wang, Z. Li. Fracture behavior at crack tip --- a new framework for cleavage mechanism of steel. Acta Materialia, 2003, 51: 1841-1855.

  81. G.Z. Wang*, J.H. Chen and J.G. Wang.On measurement and meaning of the cleavage fracture stress in steel, International Journal of Fracture. 2002, 118: 211-227.

  82. G.Z. Wang*, J. H. Chen and G. H. Liu. On the characteristic distance and minimum fracture toughness for cleavage fracture in a C-Mn steel. International Journal of Fracture, 2002, 118:57-76.

  83. G.Z. Wang*, Z. Q. Dong , J. H. Chen and X. Chen: Mechanism of effects of warm prestressing(WPS) on apparent toughness of notched steel specimens: Part I: Experimental. International Journal of Fracture, 2002, 117:359-373.

  84. G.Z. Wang*, G. H. Liu and J. H. Chen: Effects of precracked specimen geometry on local cleavage fracture stress σf of low alloy steel. International Journal of Fracture. 2001, 112:183-196.

  85. G.Z. Wang* and J. H. Chen.A statistical model for cleavage fracture in notched specimens of C-Mn steel. Fatig. & Fract. of Engng Mater. & Struct. 2001, 24: 451-459.

  86. G.Z. Wang*, J. H. Chen. On locations initiating cleavage fracture in precracked specimens of low alloy steel and weld metal. International Journal of Fracture, 2001, 108: 235-250.

  87. J. H. Chen, G.Z. Wang*. Study on cleavage fracture criteria of the quasi-brittle and micro-inhomogeneous materials. International Journal of Fracture, 2001, 108: 143-164.

  88. X.M. Tan, G.Z. Wang*S.T. Tu, F.Z. Xuan. Creep constraint and fracture parameter C* for axial semi-elliptical surface cracks with high aspect ratio in pressurized pipes. Engineering Fracture Mechanics, 2018; 199: 358–371.

  89. F Chen, G.Z. Wang*S.T. Tu, F.Z. Xuan. Creep constraint analysis for test specimens with a wide range of dimensions and comparison with constraint of cracked pipes. Engineering Fracture Mechanics, 2018; 204: 454–468.
  90. J.Y. Xu, G.Z. Wang*F.Z. Xuan, S.T. Tu. Unified constraint parameter based on crack-tip opening displacement. Engineering Fracture Mechanics, 2018; 200: 175–188.


网页发布时间: 2019-05-16