刘立帅


  刘立帅


  教授,博士生导师

  E-maillishuai.liu@ecust.edu.cn

  课题组每年招生计划:博士 4~5名,硕士 12~15名

  招生专业:机械工程[080200],动力工程及工程热物理[080700],机械[085500]

  

                          欢迎加入 “智能声学感知与成像”课题组攻读学位!


个人简介


 华东理工大学机械与动力工程学院教授、博士生导师,国家优秀青年科学基金获得者,入选中国科协青年人才托举工程、上海市晨光学者、上海市青年科技英才扬帆计划、华东理工大学青年英才A类清华大学电气工程博士,加拿大多伦多大学先进扩散波与光声技术中心访问学者。主持国家自然科学基金3项、国家重点研发计划项目任务3项、上海市自然科学基金、上海市“科技创新行动计划”技术标准项目、上海市教委科委人才项目等多项国家/省部级科研项目10余项。面向航空航天、新能源装备、核电、增材制造等高端装备健康状态精准感知需求,主要从事多源感知信息机器学习与智能成像技术研究。发表学术论文50余篇,参与制定国家标准4项


教育背景:


2017.09-2020.10        清华大学            电机工程与应用电子技术系            博士

2019.09-2020.04        多伦多大学        机械与工业工程系                          访问学者

2015.09-2017.06        清华大学            电机工程与应用电子技术系            硕士

2011.09-2015.06        武汉大学            电气工程学院                                本科


研究兴趣


[1]  智能定量无损检测及寿命预测

[2]  柔性传感器件与阵列超声(导波)感测

[3]  数据与物理融合驱动的人工智能方法

[4]  复杂介质/生物组织智能反演成像


研究生招生

  

“智能声学感知与成像”课题组每年招收直博生/硕博连读/统招博士生4~6名,推免/考研硕士生12~15名。

课题组可为学生提供:

[1]  一流的研究平台与资:课题组承担多项国家重大科技项目,科研经费充足,完善的软硬件资源(实验仪器与算力充足,缺啥就买^_^),丰富的学术会议交流锻炼机会,助研津贴与科研奖励丰厚,保障学生无后顾之忧地进行科研探索;

[2]  优秀的学术氛围:课题组导师拥有电气工程、机械工程、物理学、仪器仪表科学等多学科交叉背景,研究生课题面向科技前沿/国家重大需求/生命健康/工业界痛点问题等领域,促进思维碰撞和融合创新。科研是一件既有趣有充满挑战的事,导师与研究生“一对一”指导,做好科研路上的引路人和同行者;

[3]  个性化的培养模式课题组根据学生兴趣和特长进行个性化培养:有意学术深造的同学鼓励研究前沿理论和方法,锻炼科学和创新思维,规划学术发展路线;计划工业界大展身手的同学锻炼软硬件工程开发能力,推荐与重点企业工程协作。


教学科研情况


承担科研项目:


[1]   国家自然科学基金优秀青年科学基金项目,主持

[2]   国家自然科学基金面上项目,主持

[3]   国家自然科学基金青年项目,主持

[4]   国家重点研发计划子课题,主持

[5]   中国科协青年人才托举工程项目,主持

[6]   上海市教委晨光计划项目,主持

[7]   上海市青年科技英才扬帆计划,主持

[8]   上海市“科技创新行动计划”技术标准项目,主持

[9]   上海市自然科学基金滚动项目,主持

[10]   上海市自然科学基金面上项目,主持

[11]   中央一流引导专项-“双一流”建设项目,主持


教学情况:


本科生课程《人工智能技术及应用》(60学时,智能制造专业核心课程)、《机器学习概论》(32学时)


学术兼职

 

中国声学学会声学传感与仪器分会副主任委员

中国仪器仪表学会声学仪器专委会委员

全国焊缝试验和检验标准化技术委员会委员

全国无损检测标准化技术委员会技术专家

CSTM声学检测技术委员会委员兼秘书长

CSTM核电检测技术委员会委员

上海市声学学会理事


荣誉奖励


国家优秀青年科学基金

中国石化工业联合会科技进步奖一等奖

中国科协青年人才托举工程

IEEE TIM Outstanding Reviewer(2021、2022、2024)

全国无损检测标准化技术委员会优秀标准化工作者

中国电机工程学报高影响力论文奖

上海高校青年科研骨干培养“晨光计划”

上海市青年科技英才“扬帆计划”

华东理工大学青年英才A类

清华大学优秀学位论文


学术成果


代表性论文:


[1]    Jiachen Zhou, Lishuai Liu*, Haiming Xu, Yanxun Xiang*, and Fu-Zhen Xuan. An online data-driven method for predicting crack propagation and remaining fatigue life via combining linear and nonlinear ultrasonic. Ultrasonics, 2025, 155: 107707. (SCI, IF = 4.2)

[2]    Haiming Xu, Lishuai Liu*, Jiachen Zhou, Siyuan Peng, Xuan Li, Zheng Hu, Yanxun Xiang*, and Fu-Zhen Xuan. Lamb Wave Visualization of Microcrack Growth Based on Acoustic Nonlinearity Aware-Dictionary and Gradient Projection Sparse Representation. IEEE Transactions on Industrial Informatics, 2025, 21(3): 2699-2708. (SCI, IF = 12.3)

[3]    Xuan Li, Lishuai Liu*, Haiming Xu, Yanxun Xiang*, and Fu-Zhen Xuan. Nonlinear ultrasonic Lamb wave phased array imaging based on hybrid array and time-reversal of harmonic. Structural Health Monitoring, 2024. (SCI, IF = 6.6)

[4]    Haiming XuLishuai Liu*, Xuan Li, Siyuan Peng, Yanxun Xiang*, and Fu-Zhen Xuan. Nonlinear Lamb wave phased array for revealing micro-damage based on the second harmonic reconstruction. Mechanical Systems and Signal Processing, 2024, 220: 111692. (SCI, IF = 8.4)

[5]    Wen Liu, Lishuai Liu*, Yanxun Xiang*, and Fu-Zhen Xuan. Hierarchical energy distribution-based Lamb wave tomography for damage localization in multilayer heterogeneous metallic bonded structures. IEEE Transactions on Instrumentation and Measurement, 2024. (SCI, IF = 5.6)

[6]    Wen LiuLishuai Liu*, Qiang Wan, Yanxun Xiang*, and Fu-Zhen Xuan. Baseline-free damage localization in multilayer metallic spherical shell structures using guided wave tomography. NDT&E International, 2024, 147: 103213. (SCI, IF = 4.2)

[7]    Peng Wu, Lishuai Liu*, Ailing Song, Yanxun Xiang*, and Fu-Zhen Xuan. A data augmentation approach for improving data-driven nonlinear ultrasonic characterization based on generative adversarial U-net. Applied Acoustics, 2024, 225: 110208. (SCI, IF = 3.4)

[8]    Haiming Xu, Lishuai Liu*, Xuan Li, Yanxun Xiang*, and Fu-Zhen Xuan. Wavefield imaging of nonlinear ultrasonic Lamb waves for visualizing fatigue micro-cracks. Ultrasonics, 2024, 138: 107214. (SCI, IF = 4.2)

[9]    Zhiyuan Zhao, Lishuai Liu*, Wen Liu, Da Teng, Yanxun Xiang*, and Fu-Zhen Xuan. Discretized tensor-based model of total focusing method: A sparse regularization approach for enhanced ultrasonic phased array imaging. NDT&E International, 2024, 141(5): 102987. (SCI, IF = 4.2)

[10]  Yanxin Tu, Lishuai Liu*, Bin Cao*, Hongwei Mei, and Liming Wang. Infrared-Induced Laser Shearography: Enhanced Multimodal Features Recognition for Interfacial Defects in SIR/GFRP Composite StructuresIEEE Transactions on Instrumentation and Measurement, 2024, 73: 6005313. (SCI, IF = 5.6)

[11]  Lishuai Liu, Wen Liu, Da Teng, Yanxun Xiang*, and Fu-Zhen Xuan. A multiscale residual U-net architecture for super-resolution ultrasonic phased array imaging from full matrix capture data. Journal of the Acoustical Society of America, 2023, 154(4): 2044-2054. (SCI, IF = 2.4)

[12]  Xuan Li, Lishuai Liu*, Haiming Xu, Zheng Hu, Yanxun Xiang*, and Fu-Zhen Xuan. Lamb wave phased array imaging based on phase-amplitude compounding algorithm. Mechanical Systems and Signal Processing, 2023, 205: 110882. (SCI, IF = 8.4)

[13]  Haiming XuLishuai Liu*, Jichao Xu, Yanxun Xiang*, and Fu-Zhen Xuan. Deep learning enables nonlinear Lamb waves for precise location of fatigue crack. Structural Health Monitoring, 2024, 23(1): 77-93. (SCI, IF = 6.6)

[14]  Peng Wu, Lishuai Liu*, Yanxun Xiang*, and Fu-Zhen Xuan. Data-driven time-frequency analysis of nonlinear Lamb waves for characterization of grain size distribution. Applied Acoustics, 2023, 207: 109367. (SCI, IF = 3.4)

[15]  Lishuai Liu, Peng Wu, Yanxun Xiang*, and Fu-Zhen Xuan. Autonomous characterization of grain size distribution using nonlinear Lamb waves based on deep learning. Journal of the Acoustical Society of America, 2022, 152(3): 1913-1921. (SCI, IF = 2.4)

[16]  Lishuai Liu, Di Sun, Yanxun Xiang*, and Fu-Zhen Xuan. Deep learning-based solvability of underdetermined inverse problems in nonlinear ultrasonic characterization of micro damages. Journal of Applied Physics, 2022, 132(14): 144901. (SCI, IF = 3.2, Featured Article, Highlighted in AIP Scilight at https://doi.org/10.1063/10.0014855)

[17]  Lishuai Liu, Chenjun Guo, Yanxun Xiang*, Yanxin Tu, Liming Wang, and Fu-Zhen Xuan. A Semisupervised Learning Framework for Recognition and Classification of Defects in Transient Thermography Detection. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2632-2640. (SCI, IF = 12.3)

[18]  Lishuai Liu, Chenjun Guo, Yanxun Xiang*, Yanxin Tu, Liming Wang, and Fu-Zhen Xuan. Photothermal Radar Shearography: A Novel Transient-Based Speckle Pattern Interferometry for Depth-Tomographic Inspection. IEEE Transactions on Industrial Informatics, 2022, 18(7): 4352-4360. (SCI, IF = 12.3)

[19]  Lishuai Liu, Andreas Mandelis*, Alexander Melnikov, and Liming Wang. Comparative analysis of single- and multiple-frequency thermal wave radar imaging inspection of glass fiber reinforced polymer (GFRP). International Journal of Extreme Manufacturing, 2022, 4(2): 025201. (SCIIF = 14.7)

[20]  Lishuai Liu, Chenjun Guo, Yanxun Xiang*, Yanxin Tu, Hongwei Mei, Liming Wang, and Fu-Zhen Xuan. Health Monitoring of RTV Silicone Rubber Coating on Insulators Based on Multimode Features of Active Infrared Thermography. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 4502609. (SCI, IF = 5.6)

[21]  Xianzhi Wang, Lishuai Liu*. Concentric diversity entropy: A high flexible feature extraction tool for identifying fault types with different structures. Mechanical Systems and Signal Processing, 2022, 171:108934. (SCI, IF = 8.4)

[22]  Yanxin Tu, Hongwei Mei, Lishuai Liu*, Zekai Shen, Chenjun Guo, and Liming Wang*Transient thermal pattern separation and detection of conductive defects in composite insulators using eddy current pulsed thermographyNDT & E International, 2022, 129(5): 102653. (SCI, IF = 4.2)

[23]  Yanxin Tu, Hongwei Mei, Lishuai Liu*, Rui Sun, Chenjun Guo, Zekai Shen, and Liming Wang. Distance Effect in Transient Thermography for Internal Defects Detection in CompositesIEEE Transactions on Instrumentation and Measurement, 2022, 71: 3525712. (SCI, IF = 5.6)

[24]  Chenjun GuoLishuai Liu*, Hongwei Mei, Yanxin Tu, and Liming Wang. Nondestructive Evaluation of Composite Bonding Structure used in Electrical Insulation Based on Active Infrared ThermographyPolymers, 2022, 14(16): 3373. (SCI, IF = 5.0)

[25]  Lishuai Liu, Hongwei Mei, Chenjun Guo, Yanxin Tu, and Liming Wang*. Pixel-level Classification of Pollution Severity on Insulators Using Photothermal Radiometry and Multi-class Semi-supervised Support Vector Machine. IEEE Transactions on Industrial Informatics, 2021, 17(1): 441-449. (SCI, IF = 12.3)

[26]  Lishuai Liu, Chenjun Guo, Yanxin Tu, Hongwei Mei, and Liming Wang*. Differential Evolution Fitting-Based Optical Step Phase Thermography for Micron Thickness Measurement of Atmospheric Corrosion Layer. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5213-5222. (SCI, IF = 12.3)

[27]  Lishuai Liu, Hongwei Mei, Chenjun Guo, Yanxin Tu, Liming Wang*, and Jianben Liu. Remote Optical Thermography Detection Method and System for Silicone Polymer Insulating Materials Used in Power Industry. IEEE Transactions on Instrumentation and Measurement, 2020, 69(8): 5782-5790. (SCI, IF = 5.6)

[28]  Lishuai Liu, Liming Wang, Chenjun Guo, Hongwei Mei*, and Chenlong Zhao. Detecting Defects in Porcelain Post Insulator Coated with Room Temperature Vulcanized Silicone Rubber by Pulsed Thermography. IEEE Transactions on Instrumentation and Measurement, 2019, 68(1): 225-233. (SCI, IF = 5.6)

[29]  Lishuai Liu, Chenjun Guo, Liming Wang*, and Hongwei Mei. Nondestructive Visualization and Quantitative Characterization of Defects in Silicone Polymer Insulators with Laser Speckle Imaging. IEEE Sensors Journal, 2019, 19(15): 6508-6516. (SCI, IF = 4.3)



完整论文列表详见:https://www.researchgate.net/profile/Lishuai-Liu










网页发布时间: 2024-06-20